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Abstract

Reinforcement learning (RL) is a core component of artificial intelligence that enables decision-making in

complex domains. Most existing RL algorithms ignore the risk associated with making decisions, which limits

their application to high-stakes decision-making, which can be found in domains such as healthcare, finance,

criminal justice, autonomous driving, and others. My goal in this project is to develop scalable risk-sensitive

reinforcement learning models and algorithms that can make decisions that balance a decision’s expected return

with the risk involved. Numerous algorithms for risk-averse decision-making have been studied in the literature,

but using them in the context of RL remains challenging. Many attempts to introduce risk-aversion to existing

RL methods have led to unsound algorithms that choose actions that fail to optimize the specified risk metric.

In the project, I propose taking a different route from the existing work. In particular, I propose building

risk-averse RL algorithms by first creating a rigorous understanding of risk-averse algorithms in simple domains

and then extending these algorithms to the full RL setting in which the agent has to learn to act in a complex

and unknown environment.

1 Introduction

Automatic algorithms for decision-making are essential for many artificial intelligence tasks. Markov Decision

Process (MDP) serves as the mathematical framework for modeling sequential decision-making with stochastic

outcomes. Reinforcement learning (RL) is a research area that studies algorithms that can learn to act in large,

complex MDPs just by interacting with the environment. MDPs and RL have been studied since the late 1950s [4].

Most work in RL has focused on optimizing the expected sum of rewards attained in the interaction with the

environment. This goal of maximizing the expected sum of rewards is known as the risk-neutral objective.

As RL enters a broader set of application domains, it is increasingly becoming apparent that risk-neutral objectives

are often insufficient [11]. In high-stakes environments such as autonomous driving, medical treatment, and fraud

detection, the agent needs to consider also the risk of catastrophic failures associated with any decision. Over

the past 20 years, monetary risk measures have become the most popular approach for accounting for both the

expected value and possibility of catastrophic risk when evaluating uncertain outcomes. Standard RL methods

focus only on risk-neutral objectives and can be very difficult to generalize to objectives that involve risk measures.

The one-size-fits-all risk-neutral model is insufficient in model RL, especially when dealing with the risk preferences

of diverse decision-makers in a multitude of domains.

Risk-averse RL has become an active research topic in recent years driven by the desire to bring automated, data-

driven decision-making to high-stakes domains. Much of the research has focused on developing algorithms for

specific application domains, such as motion planning [1, 5, 10], autonomous systems [14, 24], healthcare [16, 23, 25],

investment [20] and others. Another stream of research in reinforcement learning has focused on specific risk

measures or methods for evaluating the quality of an uncertain decision. Some of the most popular risk measures

include value at risk (VaR) [11, 17, 19], conditional value at risk (CVaR) [2, 6], entropic risk measure (ERM) [12],

entropic value at risk (EVaR) [21], and others. The risk-sensitive objective utilizes risk measures that map a

distribution of possible outcomes to a real number to quantify the risk associated with each action given the

current state.

The main challenge in risk-averse RL research is that the field has bifurcated into two distinct research streams:

one focusing on the theoretical aspects of risk-averse decision-making and another one solely focusing on large-scale

implementations without studying the fundamental soundness of the proposed techniques. This bifurcation has led

to numerous elegant risk-averse algorithms that do not scale to large problems [12] and scalable algorithms that
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are fundamentally flawed [8]. Little effort has been dedicated to bridging the gap between the two extremes.

2 Proposed Research Activities

My aim in this project is to develop risk-averse RL algorithms for intricate real-world high-stakes domains. These

risk-averse RL algorithms must be fundamentally sound, mainly when applied to applications where failures can

lead to significant financial losses, injury, or loss of life. My research in this project will help bridge the gap between

theoretically sound and practically scalable algorithms.

I am well prepared to tackle the proposed research questions. My previous research laid rigorous foundations for

risk-averse decision making [12] and identified important gaps and errors in existing risk-averse RL algorithms [11].

In addition, I am also proficient in designing scalable RL algorithms using deep learning.

Before describing my proposed research in detail, it is necessary to briefly summarize the limitations of the existing

approaches to risk-averse RL. The majority of risk-averse RL literature falls into one of the following three specific

categories.

The first line of work focuses on the theoretical foundations of risk-averse decision-making in small MDPs in which

the distributions of rewards associated with individual actions are known [2, 17, 19]. My earlier work also falls

in this category [11, 12]. This line of work develops the fundamental theoretical understanding with concrete

mathematical proofs and is an essential stepping stone to developing true RL algorithms. However, proper RL

algorithms must be able to learn to act even when the model of the environment is unknown and complex.

The second line of work focuses on a specific class of risk measures known as dynamic or Markov. When integrated

with RL algorithms, these risk measures are especially convenient because they respect the fundamental dynamic

decision-making structure [7, 13, 22]. The advantage of this approach is that most RL algorithms can be used with

these dynamic risk measures with little modification. Such algorithms let the agents learn from interacting with

the environment. Unfortunately, while being computationally convenient, the dynamic risk measures are virtually

impossible to interpret and can lead to inexplicable and irrational behavior of agents. Given these limitations,

dynamic risk measures have not seen much practical use.

The third line of work modifies large-scale RL algorithms to account for risk aversion. These algorithms employ

neural nets as universal value function approximators to directly estimate the distribution of potential future

outcomes linked to a specific state in the environment [3, 8, 9, 15]. These algorithms are seemingly practical

because they can apply to large problems and do not require knowing the models accommodate an infinite state

space, encompassing elements like images, videos, and continuous variables. Unfortunately, most of these algorithms

are fundamentally flawed as shown by us [11] and others [18]. They compute solutions that do not reliably optimize

the desired risk trade-off and can fail unpredictably, even in small domains.

The particular research objective during my dissertation year is to address the limitations of the existing risk-averse

RL algorithms. I will leverage the rigorous formulations introduced in my earlier papers to build scalable and sound

risk-averse RL algorithms.

1. Identifying dynamic program decompositions for a variety of risk measures. Dynamic programming is the

principal component of RL algorithms and can be difficult to establish when the objective is not risk-neutral.

My previous work has established dynamic programming equations for VaR, EVaR and ERM, and I will

generalize this decomposition to other risk measures, too.
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2. Most current risk-sensitive RL methods rely on the knowledge of the system dynamics. Identify and derive

appropriate update rules for stochastic approximation to extend risk-sensitive RL methods to model-free

environments. I will combine existing risk-averse dynamic programming algorithms with model-free RL

algorithms to build new methods that can learn to make risk-averse decisions from interactions with the

environment.

3. Design deep neural networks (NNs) that can learn in risk-averse RL settings. If successful, these algorithms

will be able to make risk-averse decisions from raw image data without extensive prepossessing.

3 Conclusion

In this proposal, I describe my research on risk-sensitive reinforcement learning and identify three important but

distinct and separate groups of work in the field. I explained the limitations of previous works and provided concrete

steps to overcome them: (1) identify sufficient statistics, (2) derive and proof stochastic update rule, and (3) design

neural network structure to incorporate the optimal policy for risk-sensitive objectives.

This research enables autonomous systems to have tailor-made objectives that correspond with the decision-maker’s

specific interests for their application. This investigation into risk-sensitive objectives in reinforcement learning

not only aids in developing autonomous systems but also enhances our understanding of human decision-making

processes. This research will allow decision scientists to gain insights from the theoretically proven optimal decision

and learning rule.
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